Novel phase structure for Lattice flavored chemical potential

Tatsuhiro MISUMI

BNL / JSPS

Based on JHEP 08(2012)068 [arXiv:1206.0969]

Chemical potential on the lattice

- (I) Continuum-like : $\mu \bar{\psi}_n \gamma_4 \psi_n \sim \mu \psi_n^{\dagger} \psi_n$
 - ightarrow quadratic divergence of energy density : $\mathcal{E} \sim \mu^2/a^2$
 - → counter terms required useless....
- (2) Photon-field-like : $\bar{\psi}_n(e^{\mu a}\psi_{n+4}-e^{-\mu a}\psi_{n-4})$ [Hasenfratz-Karsch '83]
 - → Abelian gauge invariance kept
 - ightharpoonup correct finite energy density : $\mathcal{E} \sim \mu^4$ useful!

- 1. Reconsider (1), especially for $i\mu$.
- 2. Utilize (I) for another purpose: control #flavors.
- 3.Study chiral phase diagram.

1. Lattice fermions

Doubling problem : Naive chiral&local fermion → 16 species

$$S_{N} = \sum_{n} \left[\frac{a^{3}}{2} \bar{\psi}_{n} \gamma_{\mu} (U_{n,\mu} \psi_{n+\mu} - U_{n-\mu,\mu}^{\dagger} \psi_{n-\mu}) + a^{4} m \bar{\psi}_{n} \psi_{n} \right]$$

Free propagator

$$D^{-1}(pa) = \frac{-i\gamma_{\mu}\sin ap_{\mu} + am}{\sin^{2}ap_{\mu} + a^{2}m^{2}} \rightarrow \frac{1}{a} \sum_{p_{\mu}=0,\pi/a} \frac{-i(-1)^{\delta_{\mu}}\gamma_{\mu}\hat{p}_{\mu} + m}{\hat{p}_{\mu}^{2} + m^{2}}$$

2 poles per dim. → 16 doublers in 4d

Nielsen-Ninomiya

Chiral symmetry v.s. desirable flavor number

flavors	chiral	tuning	artifact
1	0	severe	O(a)
4	I	N/A	O(a^2)
l	I	easy	$O(a^2)$
I	I	N/A	$O(a^2)$
	flavors I 4 I I	flavors chiral I 0 4 I I I	I 0 severe 4 I N/A I easy

Wilson fermion : species-splitting by mass

+
$$S_W=rac{a^5}{2}ar{\psi}_n(2\psi_n-\psi_{n+\mu}-\psi_{n-\mu})$$

$$\Rightarrow \quad D_W(p)=rac{1}{a}\sum_{\mu}[i\gamma_\mu\sin ap_\mu\,+\,(\underline{1-\cos ap_\mu})] \mbox{Flavored mass}$$

Physical (0,0,0,0):
$$D_W(p) = i\gamma_{\mu}p_{\mu} + O(a)$$

Doubler(π/a ,0,0,0): $D_W(p) = i\gamma_{\mu}p_{\mu} + \frac{2}{a} + O(a)$

Only one flavor is massless, while others have 1/a mass.

- ◆ 15 species are decoupled → doubler-less
- ◆ I/a additive mass renormalization → Fine-tune

Species-splitting without breaking chiral symmetry?

Chiral-symmetric way of lifting species degeneracy

$$\bar{\psi}_n \Delta \psi_n$$
 : lifted by flavored-mass

$(i) \bar{\psi}_n \gamma_4 \Delta \psi_n$: lifted by flavored-chemical potential

holding chiral symmetry!

Wilson

 $\sum_{\mu} (1 - \cos p_{\mu})$

Flavored chemical-pot.

Imaginary one is preferred to avoid sign problem.

2. Minimal-doubling

• #species = 2

- [Karsten '81][Wilczek '87] [Creutz '07][Borici '07] [Creutz&Misumi '10]
- One exact chiral symmetry
- Ultra-Locality

$$D_{\mathrm{KW}}(p) = i\gamma_{\mu}\sin p_{\mu} + ir\gamma_{4}\sum_{j=1}^{3}(1-\cos p_{j}) + \underline{i\mu_{3}\gamma_{4}}_{\mathrm{counterterm}}$$

Wilson-like: not mass, but img chemical potential

cf.) Wilson
$$D_W(p) = i\gamma_\mu \sin p_\mu + r \sum_{\mu=1}^4 (1 - \cos p_\mu) + m$$

Quarks

Quarks

Lattice fermions

	#doublers	chiral	spinor
naive	16	exact	4
Wilson	7	none	4
staggered	4	exact	7
min double	2	exact	4

◆MD symmetries

[Bedaque, Buchoff, Tiburzi, Walker-Loud, '08]

- I. U(I) chiral
- 2. P
- 3. CT
- 4. Cubic

In a continuum limit

- I. SU(2) chiral
- 2. P
- 3. CT
- 4. Spatial rotation
- → Symmetries of finite-density systems

cf.) Naive fermion with μ

◆Additive chemical-pot renormalization

Flavored mass in Wilson $\rightarrow I/a$ additive mass ren.

Flavored μ in MD \rightarrow 1/a additive μ ren.

To control chem pot, we need to tune $\mu_3 \bar{\psi}_n i \gamma_4 \psi_n$

This ren. can also change # of flavors!

cf.) For $(T=0, \mu=0)$ lattice QCD

3 counterterms for a Lorentz-sym cont. limit [Capitani-Creutz-Weber-Wittig '09]

dim3
$$\mu_3 \bar{\psi}_n i \gamma_4 \psi_n$$
 dim4 $\bar{\psi}_n \gamma_4 D \psi_n$ $F_{i4} F_{i4}$

◆Application to (T,µ) lattice Q

2-flavor finite-density chiral for Post Sign problem

cf.) Rooting fails for $\mu \neq 0$. High cost for overlap.

correct energy density

$$\mathcal{E} \equiv \mathcal{I}(\mu, r, \mu_3) - \mathcal{I}(0, r, \mu_3) \sim \mu^4$$

Option2: Flavored real μ + μ_3 fine-tuning To decouple 14 doublers physical chem-pot for 2 flavors

Wilson and Minimal-doubling

♦ Wilson

- Flavored mass → finite-mass system
- Chiral symmetry breaking
- Additive mass renormalization
- Mass tuning

♦MD

- Flavored chemical potential → finite-density
- Spacetime symmetry breaking
- Additive chemical potential renorm.
- µ₃ tuning

3. Phase structure in μ_3 -g space

♦ Why we need to study

Additive renorm. can change 2-flavor range.

Phase diagram can give guiding principle for \$\mu_3\$ tuning.

It is essential both for zero & finite- (T,μ) .

i) Strong-coupling limit

- I. Link variable integral
- 2. Bosonization → meson potential
- 3. Determine the vacuum
- SC meson potential for MD

$$S_{\text{eff}} = -4N_c \text{Vol.} \mathcal{V}_{\text{eff}}(\sigma, \pi_4) ,$$

$$\mathcal{V}_{\text{eff}}(\sigma, \pi_4) = \frac{1}{2} \log(\sigma^2 + \pi_4^2) - m\sigma + (\mu_3 + 3r)\pi_4$$

$$-\frac{1}{4} \left[3(1+r^2) + (1+d_4)^2 \right] \sigma^2 - \frac{1}{4} \left[3(1-r^2) - (1+d_4)^2 \right] \pi_4^2 .$$

→ Non-trivial chiral phase structure

$$g^2 = \infty$$
 $\langle \sigma \rangle = 0$ $\langle \sigma \rangle \neq 0$ $\langle \sigma \rangle = 0$ μ_3

· m=0

2nd-order phase transition

Divergent correlation length on the boundary

$$\rightarrow$$
 m_P=0 m_S=0

m≠0
 2nd-order → crossover

ii) 2d Gross-Neveu model (large N)

$$S = \frac{1}{2} \sum_{n,\nu} \bar{\psi}_n \gamma_{\nu} (\psi_{n+\nu} - \psi_{n-\nu}) + \frac{1}{2} \sum_n \bar{\psi}_n i \gamma_2 (2\psi_n - \psi_{n+\hat{1}} - \psi_{n-\hat{1}})$$
$$- \frac{1}{2N} \sum_n \left[g_{\sigma}^2 (\bar{\psi}_n \psi_n)^2 + g_2^2 (\bar{\psi}_n i \gamma_2 \psi_n)^2 \right] + \mu \sum_n \bar{\psi}_n i \gamma_2 \psi_n$$

- Phase boundary
 - 2-flavor & 0-flavor boundary

Minimal-doubling range

narrower in strong coupling

Conjecture on 4d lattice QCD with MD

µ₃ should be set in MD range.

4. (T-µ) phase diagram

i) Strong-coupling limit

- I. Link variable integral
- 2. Bosonization → meson potential
- 3. Determine the vacuum
 - \rightarrow Finite- (T,μ) case [Fukushima-Hatsuda-Nishida '04]

Meson effective potential

$$\mathcal{F}_{\text{eff}}(\sigma, \pi_4; m, T, \mu, \mu_3) = \frac{N_c D}{4} \left((1 + r^2) \sigma^2 + (1 - r^2) \pi_4^2 \right) - N_c \log A$$
$$- \frac{T}{4} \log \left(\sum_{n \in \mathbb{Z}} \det \left(Q_{n+i-j} \right)_{1 \le i, j \le N_c} \right).$$

Chiral condensate & Baryon density

- Critical density/temp ratio
 - KW fermion : $R_{\rm KW}^0 = \frac{\mu_c(T=0)}{T_c(\mu_B=0)} \sim 2.3$
 - Staggered : $R_{\rm st}^0 \sim 1$
 - Phenomenology: $R_{\rm ph}^0 \gtrsim 5.5$

- Tricritical point ratio
 - KW fermion : $R_{
 m KW}^{
 m tri} = \frac{\mu_B^{
 m tri}}{T^{
 m tri}} \simeq 3.4$
 - Staggered : $R_{\rm st}^{\rm tri} \simeq 2.0$
 - Monte-Calro simulation : $R_{
 m MC}^{
 m tri} \gtrsim 3$

Summary

- Flavored chemical potential is another way of reducing species doublers.
- The symmetries of the formulation imply it suits finite temperature and density system.
- We find chiral phase structure in parameter spaces.
- (T,µ) chiral phase diagram is close to phenomenological conjectures.

Future works

- In this talk we concentrate on Imaginary flavored μ + O(I) real μ .
- We can also study Real flavored μ with fine-tuning of μ_3 .

Effective potential

$$\mathcal{F}_{\text{eff}}(\sigma, \pi_4; m, T, \mu, \mu_3) = \frac{N_c D}{4} \left((1 + r^2) \sigma^2 + (1 - r^2) \pi_4^2 \right) - N_c \log A$$
$$- \frac{T}{4} \log \left(\sum_{n \in \mathbb{Z}} \det \left(Q_{n+i-j} \right)_{1 \le i, j \le N_c} \right).$$

for Nc = 3

$$\sum_{n \in \mathbb{Z}} \det (Q_{n+i-j})_{1 \le i,j \le N_c}
= 8 \left(1 + 12 \cosh^2 \frac{E}{T} + 8 \cosh^4 \frac{E}{T} \right) \left(15 - 60 \cosh^2 \frac{E}{T} + 160 \cosh^4 \frac{E}{T} - 32 \cosh^6 \frac{E}{T} + 64 \cosh^8 \frac{E}{T} \right)
+ 64 \cosh \frac{\mu_B}{T} \cosh \frac{E}{T} \left(-15 + 40 \cosh^2 \frac{E}{T} + 96 \cosh^4 \frac{E}{T} + 320 \cosh^8 \frac{E}{T} \right)
+ 80 \cosh \frac{2\mu_B}{T} \left(1 + 6 \cosh^2 \frac{E}{T} + 24 \cosh^4 \frac{E}{T} + 80 \cosh^6 \frac{E}{T} \right)
+ 80 \cosh \frac{3\mu_B}{T} \cosh \frac{E}{T} \left(-1 + \cosh^2 \frac{E}{T} \right) + 2 \cosh \frac{4\mu_B}{T},$$
(19)

Effective potential

with

$$A^{2} = 1 + \left(\mu_{3} + Dr - \frac{D}{2}\sqrt{1 - r^{2}}\pi_{4}\right)^{2}, \qquad B = m + \frac{D}{2}\sqrt{1 + r^{2}}\sigma,$$

$$E = \operatorname{arcsinh}\left(\frac{B}{A}\right) = \log\left[\frac{B}{A} + \sqrt{1 + \left(\frac{B}{A}\right)^{2}}\right],$$

Dispersion relation

$$S_{KW} = \sum_{n} \left[\frac{1}{2} \sum_{\mu=1}^{4} \bar{\psi}_{n} \gamma_{\mu} (U_{n,n+\mu} \psi_{n+\mu} - U_{n,n-\mu} \psi_{n-\mu}) + \frac{r}{2} \sum_{j=1}^{3} \bar{\psi}_{n} i \gamma_{4} (2\psi_{n} - U_{n,n+j} \psi_{n+j} - U_{n,n-j} \psi_{n-j}) + \mu_{3} \bar{\psi}_{n} i \gamma_{4} \psi_{n} + m \bar{\psi}_{n} \psi_{n} + \frac{d_{4}}{2} \bar{\psi}_{x} \gamma_{4} (U_{n,n+4} \psi_{n+4} - U_{n,n-4} \psi_{n-4}) \right],$$

$$(2.8)$$

$$D(p) \sim i\gamma_i p_i + i\gamma_4 p_4 \sqrt{(1+d_4)^2 - \mu_3^2} + O(ap^2)$$
. (free)

$$V(p,k) = -ig_0\left(\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4\sqrt{(1+d_4)^2 - \mu_3^2}\right) + O(ap,ak).$$